top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Discontinuities in the electromagnetic field / / M. Mithat Idemen
Discontinuities in the electromagnetic field / / M. Mithat Idemen
Autore Idemen M. Mithat
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , c2011
Descrizione fisica 1 online resource (240 p.)
Disciplina 530.14/1
621.3
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetic fields - Mathematics
Maxwell equations
Electromagnetic waves
Soggetto genere / forma Electronic books.
ISBN 1-283-17590-8
9786613175908
1-118-05791-0
1-118-05790-2
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface ix -- 1. Introduction 1 -- 2. Distributions and Derivatives in the Sense of Distribution 7 -- 2.1 Functions and Distributions, 7 -- 2.2 Test Functions. The Space C∞ 0 , 9 -- 2.3 Convergence in D, 14 -- 2.4 Distribution, 16 -- 2.5 Some Simple Operations in D, 21 -- 2.5.1 Multiplication by a Real Number or a Function, 21 -- 2.5.2 Translation and Rescaling, 21 -- 2.5.3 Derivation of a Distribution, 22 -- 2.6 Order of a Distribution, 26 -- 2.7 The Support of a Distribution, 31 -- 2.8 Some Generalizations, 33 -- 2.8.1 Distributions on Multidimensional Spaces, 33 -- 2.8.2 Vector-Valued Distributions, 38 -- 3. Maxwell Equations in the Sense of Distribution 49 -- 3.1 Maxwell Equations Reduced into the Vacuum, 49 -- 3.1.1 Some Simple Examples, 53 -- 3.2 Universal Boundary Conditions and Compatibility Relations, 54 -- 3.2.1 An Example. Discontinuities on a Combined Sheet, 57 -- 3.3 The Concept of Material Sheet, 59 -- 3.4 The Case of Monochromatic Fields, 62 -- 3.4.1 Discontinuities on the Interface Between Two -- Simple Media that Are at Rest, 64 -- 4. Boundary Conditions on Material Sheets at Rest 67 -- 4.1 Universal Boundary Conditions and Compatibility Relations for a Fixed Material Sheet, 67 -- 4.2 Some General Results, 69 -- 4.3 Some Particular Cases, 70 -- 4.3.1 Planar Material Sheet Between Two Simple Media, 70 -- 4.3.2 Cylindrically or Spherically Curved Material Sheet Located Between Two Simple Media, 91 -- 4.3.3 Conical Material Sheet Located Between Two Simple Media, 93 -- 5. Discontinuities on a Moving Sheet 109 -- 5.1 Special Theory of Relativity, 110 -- 5.1.1 The Field Created by a Uniformly Moving Point Charge, 112 -- 5.1.2 The Expressions of the Field in a Reference System Attached to the Charged Particle, 114 -- 5.1.3 Lorentz Transformation Formulas, 115 -- 5.1.4 Transformation of the Electromagnetic Field, 118 -- 5.2 Discontinuities on a Uniformly Moving Surface, 120 -- 5.2.1 Transformation of the Universal Boundary Conditions, 123 -- 5.2.2 Transformation of the Compatibility Relations, 126.
5.2.3 Some Simple Examples, 126 -- 5.3 Discontinuities on a Nonuniformly Moving Sheet, 138 -- 5.3.1 Boundary Conditions on a Plane that Moves in a Direction Normal to Itself, 139 -- 5.3.2 Boundary Conditions on the Interface of Two Simple Media, 143 -- 6. Edge Singularities on Material Wedges Bounded by Plane Boundaries 149 -- 6.1 Introduction, 149 -- 6.2 Singularities at the Edges of Material Wedges, 153 -- 6.3 The Wedge with Penetrable Boundaries, 154 -- 6.3.1 The H Case, 156 -- 6.3.2 The E Case, 171 -- 6.4 The Wedge with Impenetrable Boundaries, 174 -- 6.5 Examples. Application to Half-Planes, 175 -- 6.6 Edge Conditions for the Induced Surface Currents, 176 -- 7. Tip Singularities at the Apex of a Material Cone 179 -- 7.1 Introduction, 179 -- 7.2 Algebraic Singularities of an H-Type Field, 185 -- 7.2.1 Contribution of the Energy Restriction, 185 -- 7.2.2 Contribution of the Boundary Conditions, 186 -- 7.3 Algebraic Singularities of an E-Type Field, 191 -- 7.4 The Case of Impenetrable Cones, 193 -- 7.5 Confluence and Logarithmic Singularities, 195 -- 7.6 Application to some Widely used Actual Boundary Conditions, 197 -- 7.7 Numerical Solutions of the Transcendental Equations Satisfied by the Minimal Index, 200 -- 7.7.1 The Case of Very Sharp Tip, 200 -- 7.7.2 The Case of Real-Valued Minimal v, 201 -- 7.7.3 A Function-Theoretic Method to Determine Numerically the Minimal v, 203 -- 8. Temporal Discontinuities 209 -- 8.1 Universal Initial Conditions, 209 -- 8.2 Linear Mediums in the Generalized Sense, 211 -- 8.3 An Illustrative Example, 212 -- References 215 -- Index 219 -- IEEE Press Series on Electromagnetic Wave Theory.
Record Nr. UNINA-9910139627403321
Idemen M. Mithat  
Hoboken, New Jersey : , : Wiley-IEEE Press, , c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discontinuities in the electromagnetic field / / M. Mithat Idemen
Discontinuities in the electromagnetic field / / M. Mithat Idemen
Autore Idemen M. Mithat
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , c2011
Descrizione fisica 1 online resource (240 p.)
Disciplina 530.14/1
621.3
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetic fields - Mathematics
Maxwell equations
Electromagnetic waves
ISBN 1-283-17590-8
9786613175908
1-118-05791-0
1-118-05790-2
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface ix -- 1. Introduction 1 -- 2. Distributions and Derivatives in the Sense of Distribution 7 -- 2.1 Functions and Distributions, 7 -- 2.2 Test Functions. The Space C∞ 0 , 9 -- 2.3 Convergence in D, 14 -- 2.4 Distribution, 16 -- 2.5 Some Simple Operations in D, 21 -- 2.5.1 Multiplication by a Real Number or a Function, 21 -- 2.5.2 Translation and Rescaling, 21 -- 2.5.3 Derivation of a Distribution, 22 -- 2.6 Order of a Distribution, 26 -- 2.7 The Support of a Distribution, 31 -- 2.8 Some Generalizations, 33 -- 2.8.1 Distributions on Multidimensional Spaces, 33 -- 2.8.2 Vector-Valued Distributions, 38 -- 3. Maxwell Equations in the Sense of Distribution 49 -- 3.1 Maxwell Equations Reduced into the Vacuum, 49 -- 3.1.1 Some Simple Examples, 53 -- 3.2 Universal Boundary Conditions and Compatibility Relations, 54 -- 3.2.1 An Example. Discontinuities on a Combined Sheet, 57 -- 3.3 The Concept of Material Sheet, 59 -- 3.4 The Case of Monochromatic Fields, 62 -- 3.4.1 Discontinuities on the Interface Between Two -- Simple Media that Are at Rest, 64 -- 4. Boundary Conditions on Material Sheets at Rest 67 -- 4.1 Universal Boundary Conditions and Compatibility Relations for a Fixed Material Sheet, 67 -- 4.2 Some General Results, 69 -- 4.3 Some Particular Cases, 70 -- 4.3.1 Planar Material Sheet Between Two Simple Media, 70 -- 4.3.2 Cylindrically or Spherically Curved Material Sheet Located Between Two Simple Media, 91 -- 4.3.3 Conical Material Sheet Located Between Two Simple Media, 93 -- 5. Discontinuities on a Moving Sheet 109 -- 5.1 Special Theory of Relativity, 110 -- 5.1.1 The Field Created by a Uniformly Moving Point Charge, 112 -- 5.1.2 The Expressions of the Field in a Reference System Attached to the Charged Particle, 114 -- 5.1.3 Lorentz Transformation Formulas, 115 -- 5.1.4 Transformation of the Electromagnetic Field, 118 -- 5.2 Discontinuities on a Uniformly Moving Surface, 120 -- 5.2.1 Transformation of the Universal Boundary Conditions, 123 -- 5.2.2 Transformation of the Compatibility Relations, 126.
5.2.3 Some Simple Examples, 126 -- 5.3 Discontinuities on a Nonuniformly Moving Sheet, 138 -- 5.3.1 Boundary Conditions on a Plane that Moves in a Direction Normal to Itself, 139 -- 5.3.2 Boundary Conditions on the Interface of Two Simple Media, 143 -- 6. Edge Singularities on Material Wedges Bounded by Plane Boundaries 149 -- 6.1 Introduction, 149 -- 6.2 Singularities at the Edges of Material Wedges, 153 -- 6.3 The Wedge with Penetrable Boundaries, 154 -- 6.3.1 The H Case, 156 -- 6.3.2 The E Case, 171 -- 6.4 The Wedge with Impenetrable Boundaries, 174 -- 6.5 Examples. Application to Half-Planes, 175 -- 6.6 Edge Conditions for the Induced Surface Currents, 176 -- 7. Tip Singularities at the Apex of a Material Cone 179 -- 7.1 Introduction, 179 -- 7.2 Algebraic Singularities of an H-Type Field, 185 -- 7.2.1 Contribution of the Energy Restriction, 185 -- 7.2.2 Contribution of the Boundary Conditions, 186 -- 7.3 Algebraic Singularities of an E-Type Field, 191 -- 7.4 The Case of Impenetrable Cones, 193 -- 7.5 Confluence and Logarithmic Singularities, 195 -- 7.6 Application to some Widely used Actual Boundary Conditions, 197 -- 7.7 Numerical Solutions of the Transcendental Equations Satisfied by the Minimal Index, 200 -- 7.7.1 The Case of Very Sharp Tip, 200 -- 7.7.2 The Case of Real-Valued Minimal v, 201 -- 7.7.3 A Function-Theoretic Method to Determine Numerically the Minimal v, 203 -- 8. Temporal Discontinuities 209 -- 8.1 Universal Initial Conditions, 209 -- 8.2 Linear Mediums in the Generalized Sense, 211 -- 8.3 An Illustrative Example, 212 -- References 215 -- Index 219 -- IEEE Press Series on Electromagnetic Wave Theory.
Record Nr. UNINA-9910831058803321
Idemen M. Mithat  
Hoboken, New Jersey : , : Wiley-IEEE Press, , c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic computation methods for lightning surge protection studies / / authored by Yoshihiro Baba and Vladimir A. Rakov
Electromagnetic computation methods for lightning surge protection studies / / authored by Yoshihiro Baba and Vladimir A. Rakov
Autore Baba Yoshihiro
Pubbl/distr/stampa Hoboken : , : John Wiley & Sons Inc., , 2016
Descrizione fisica 1 online resource (330 p.)
Disciplina 621.31/7
Soggetto topico Transients (Electricity) - Mathematical models
Lightning-arresters - Mathematical models
Lightning protection - Mathematical models
Electromagnetism - Mathematics
Time-domain analysis
ISBN 1-118-27565-9
1-118-27564-0
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface 1 -- Introduction 2 -- Lightning 3 -- The Finite-Difference Time-Domain Method for Solving Maxwell's Equations 4 -- Applications to Lightning Surge Protection Studies Appendix 3D-FDTD Program in C++ Index .
Record Nr. UNINA-9910136431103321
Baba Yoshihiro  
Hoboken : , : John Wiley & Sons Inc., , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic computation methods for lightning surge protection studies / / authored by Yoshihiro Baba and Vladimir A. Rakov
Electromagnetic computation methods for lightning surge protection studies / / authored by Yoshihiro Baba and Vladimir A. Rakov
Autore Baba Yoshihiro
Pubbl/distr/stampa Hoboken : , : John Wiley & Sons Inc., , 2016
Descrizione fisica 1 online resource (330 p.)
Disciplina 621.31/7
Soggetto topico Transients (Electricity) - Mathematical models
Lightning-arresters - Mathematical models
Lightning protection - Mathematical models
Electromagnetism - Mathematics
Time-domain analysis
ISBN 1-118-27565-9
1-118-27564-0
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface 1 -- Introduction 2 -- Lightning 3 -- The Finite-Difference Time-Domain Method for Solving Maxwell's Equations 4 -- Applications to Lightning Surge Protection Studies Appendix 3D-FDTD Program in C++ Index .
Record Nr. UNINA-9910830694703321
Baba Yoshihiro  
Hoboken : , : John Wiley & Sons Inc., , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic modeling and simulation [[electronic resource] /] / Levent Sevgi
Electromagnetic modeling and simulation [[electronic resource] /] / Levent Sevgi
Autore Sevgi Levent
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014]
Descrizione fisica 1 online resource (666 pages)
Disciplina 621.380285/53
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetism - Computer simulation
ISBN 1-118-87711-X
1-118-71644-2
9781118716410
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xvii -- About the Author xxvii -- Acknowledgments xxix -- 1 Introduction to MODSIM 1 -- 1.1 Models and Modeling, 2 -- 1.2 Validation, Verifi cation, and Calibration, 5 -- 1.3 Available Core Models, 7 -- 1.4 Model Selection Criteria, 9 -- 1.5 Graduate Level EM MODSIM Course, 11 -- 1.5.1 Course Description and Plan, 11 -- 1.5.2 Available Virtual EM Tools, 12 -- 1.6 EM-MODSIM Lecture Flow, 12 -- 1.7 Two Level EM Guided Wave Lecture, 17 -- 1.8 Conclusions, 19 -- References, 19 -- 2 Engineers Speak with Numbers 23 -- 2.1 Introduction, 23 -- 2.2 Measurement, Calculation, and Error Analysis, 24 -- 2.3 Significant Digits, Truncation, and Round-Off Errors, 27 -- 2.4 Error Propagation, 28 -- 2.5 Error and Confi dence Level, 29 -- 2.5.1 Predicting the Population's Confidence Interval, 33 -- 2.6 Hypothesis Testing, 36 -- 2.6.1 Testing Population Mean, 38 -- 2.6.2 Testing Population Proportion, 39 -- 2.6.3 Testing Two Population Averages, 39 -- 2.6.4 Testing Two Population Proportions, 39 -- 2.6.5 Testing Paired Data, 40 -- 2.7 Hypothetical Tests on Cell Phones, 41 -- 2.8 Conclusions, 45 -- References, 45 -- 3 Numerical Analysis in Electromagnetics 47 -- 3.1 Taylor's Expansion and Numerical Differentiation, 47 -- 3.1.1 Taylor's Expansion and Ordinary Differential Equations, 50 -- 3.1.2 Poisson and Laplace Equations, 52 -- 3.1.3 An Iterative (Finite-Difference) Solution, 53 -- 3.2 Numerical Integration, 58 -- 3.2.1 Rectangular Method, 58 -- 3.3 Nonlinear Equations and Root Search, 62 -- 3.4 Linear Systems of Equations, 64 -- References, 69 -- 4 Fourier Transform and Fourier Series 71 -- 4.1 Introduction, 71 -- 4.2 Fourier Transform, 72 -- 4.2.1 Fourier Transform (FT), 72 -- 4.2.2 Discrete Fourier Transform (DFT), 74 -- 4.2.3 Fast Fourier Transform (FFT), 76 -- 4.2.4 Aliasing, Spectral Leakage, and Scalloping Loss, 77 -- 4.2.5 Windowing and Window Functions, 80 -- 4.3 Basic Discretization Requirements, 81 -- 4.4 Fourier Series Representation, 85 -- 4.5 Rectangular Pulse and Its Harmonics, 92.
4.6 Conclusions, 92 -- References, 94 -- 5 Stochastic Modeling in Electromagnetics 95 -- 5.1 Introduction, 95 -- 5.2 Radar Signal Environment, 98 -- 5.2.1 Random Number Generation, 98 -- 5.2.2 Noise Generation, 101 -- 5.2.3 Signal Generation, 108 -- 5.2.4 Clutter Generation, 108 -- 5.3 Total Radar Signal, 111 -- 5.4 Decision Making and Detection, 114 -- 5.4.1 Hypothesis Operating Characteristics (HOCs), 115 -- 5.4.2 A Communication/Radar Receiver, 119 -- 5.5 Conclusions, 129 -- References, 130 -- 6 Electromagnetic Theory: Basic Review 133 -- 6.1 Maxwell Equations and Reduction, 133 -- 6.2 Waveguiding Structures, 134 -- 6.3 Radiation Problems and Vector Potentials, 136 -- 6.4 The Delta Dirac Function, 138 -- 6.5 Coordinate Systems and Basic Operators, 139 -- 6.6 The Point Source Representation, 141 -- 6.7 Field Representation of a Point/Line Source, 142 -- 6.8 Alternative Field Representations, 143 -- 6.9 Transverse Electric/Magnetic Fields, 145 -- 6.9.1 The 3D TE/TM Waves, 145 -- 6.9.2 The 2D TE/TM Waves, 146 -- 6.10 The TE/TM Source Injection, 151 -- 6.11 Second-Order EM Differential Equations, 154 -- 6.12 EM Wave-Transmission Line Analogy, 155 -- 6.13 Time Dependence in Maxwell Equations, 157 -- 6.14 Physical Fundamentals, 158 -- References, 158 -- 7 Sturm-Liouville Equation: The Bridge between Eigenvalue and Green's Function Problems 161 -- 7.1 Introduction, 161 -- 7.2 Guided Wave Scenarios, 162 -- 7.3 The Sturm-Liouville Equation, 165 -- 7.3.1 The Eigenvalue Problem, 167 -- 7.3.2 The Green's Function (GF) Problem, 168 -- 7.3.3 Finite z-Domain Problem, 169 -- 7.3.4 Infi nite z-Domain Problem, 170 -- 7.3.5 Relation between Eigenvalue and Green's Function Problems, 171 -- 7.4 Conclusions, 172 -- References, 173 -- 8 The 2D Nonpenetrable Parallel Plate Waveguide 175 -- 8.1 Introduction, 176 -- 8.2 Propagation Inside a 2D-PEC Parallel Plate Waveguide, 177 -- 8.2.1 Formulation of the TE- and TM-Type Problems, 178 -- 8.2.2 The Green's Function Problem, 181 -- 8.2.3 Accessing the Spectral Domain: Separation of Variables, 182.
8.2.4 Spectral Representations: Eigenvalue Problems, 183 -- 8.2.5 Spectral Representations: 1D Characteristic Green's Functions, 184 -- 8.2.6 The 2D Green's Function Problem: Alternative Representations, 185 -- 8.3 Alternative Representation: Eigenray Solution, 187 -- 8.3.1 Relation between Eigenmode and Eigenray Representations, 191 -- 8.3.2 2D GF and Hybrid Ray-Mode Decomposition, 192 -- 8.4 A 2D-PEC Parallel Plate Waveguide Simulator, 194 -- 8.4.1 Representations Used for Mode, Ray, and Hybrid Solutions, 195 -- 8.4.2 MATLAB Packages: RayMode and Hybrid, 207 -- 8.4.3 Numerical Examples, 210 -- 8.5 Eigenvalue Extraction from Propagation Characteristics, 215 -- 8.5.1 Longitudinal Correlation Function, 215 -- 8.5.2 Numerical Illustrations, 217 -- 8.6 Tilted Beam Excitation, 221 -- 8.7 Conclusions, 223 -- References, 225 -- 9 Wedge Waveguide with Nonpenetrable Boundaries 227 -- 9.1 Introduction, 228 -- 9.2 Statement of the Problem: Physical Configuration and Ray-Asymptotic Guided Wave Schematizations, 229 -- 9.3 Source-Free Solutions, 230 -- 9.3.1 Separable Coordinates: Conventional NM, 230 -- 9.3.2 Weakly Nonseparable Coordinates: AM, 231 -- 9.3.3 Uniformizing the AM Near Caustics: IM, 232 -- 9.4 Test Problem: The 2D Line-Source-Excited Nonpenetrable Wedge Waveguide, 234 -- 9.4.1 Exact Solution in Cylindrical Coordinate, 234 -- 9.4.2 Approximate Solutions in Rectangular Coordinates, 241 -- 9.4.3 IM Spectral Representation, 244 -- 9.5 The MATLAB Package “WedgeGUIDE,” 247 -- 9.6 Numerical Tests and Illustrations, 249 -- 9.7 Conclusions, 256 -- Appendix 9A: Formation of the Spectral IM Integral in Section 9.3.3, 257 -- References, 262 -- 10 High Frequency Asymptotics: The 2D Wedge Diffraction Problem 265 -- 10.1 Introduction, 266 -- 10.2 Plane Wave Illumination and HFA Models, 268 -- 10.2.1 Exact Solution by Series Summation, 268 -- 10.2.2 The Physical Optics (PO) Solution, 270 -- 10.2.3 The PTD Solution, 272 -- 10.2.4 The UTD Solution, 273 -- 10.2.5 The Parabolic Equation (PE) Solution, 275.
10.3 HFA Models under Line Source (LS) Excitations, 275 -- 10.3.1 Exact Solution by Series Summation, 276 -- 10.3.2 Exact Solution by Integral, 277 -- 10.3.3 The Parabolic Equation (PE) Solution, 277 -- 10.4 Basic MATLAB Scripts, 278 -- 10.5 The WedgeGUI Virtual Tool and Some Examples, 291 -- 10.6 Conclusions, 297 -- References, 298 -- 11 Antennas: Isotropic Radiators and Beam Forming/Beam Steering 301 -- 11.1 Introduction, 301 -- 11.2 Arrays of Isotropic Radiators, 303 -- 11.3 The ARRAY Package, 306 -- 11.4 Beam Forming/Steering Examples, 310 -- 11.5 Conclusions, 317 -- References, 318 -- 12 Simple Propagation Models and Ray Solutions 319 -- 12.1 Introduction, 320 -- 12.2 Ray-Tracing Approaches, 321 -- 12.3 A Ray-Shooting MATLAB Package, 323 -- 12.4 Characteristic Examples, 329 -- 12.5 Flat-Earth Problem and 2Ray Model, 333 -- 12.6 Knife-Edge Problem and 4Ray Model, 338 -- 12.7 Ray Plus Diffraction Models, 348 -- 12.8 Conclusions, 351 -- References, 351 -- 13 Method of Moments 353 -- 13.1 Introduction, 353 -- 13.2 Approximating a Periodic Function by Other Functions: Fourier Series Representation, 354 -- 13.3 Introduction to the MoM, 359 -- 13.4 Simple Applications of MoM, 361 -- 13.4.1 An Ordinary Differential Equation, 361 -- 13.4.2 The Parallel Plate Capacitor, 364 -- 13.4.3 Propagation over PEC Flat Earth, 366 -- 13.5 MoM Applied to Radiation and Scattering Problems, 372 -- 13.5.1 A Complex Antenna Structure, 372 -- 13.5.2 Ground Wave Propagation Modeling, 373 -- 13.5.3 EM Scattering from Infinitely Long Cylinder, 376 -- 13.5.4 3D RCS Modeling, 381 -- 13.6 MoM Applied to Wedge Diffraction Problem, 386 -- 13.7 MoM Applied to Wedge Waveguide Problem, 397 -- 13.8 Conclusions, 402 -- References, 402 -- 14 Finite-Difference Time-Domain Method 407 -- 14.1 FDTD Representation of EM Plane Waves, 407 -- 14.1.1 Maxwell Equations and Plane Waves, 408 -- 14.1.2 FDTD and Discretization, 410 -- 14.1.3 A One-Dimensional FDTD MATLAB Script, 417 -- 14.1.4 MATLAB-Based FDTD1D Package, 417.
14.2 Transmission Lines and Time-Domain Reflectometer, 429 -- 14.2.1 Transmission Line (TL) Theory, 430 -- 14.2.2 Plane Wave-Transmission Line Analogy, 434 -- 14.2.3 FDTD Representation of TL Equations, 437 -- 14.2.4 MATLAB-Based TDRMeter Package, 447 -- 14.2.5 Fourier Analysis and Reflection Characteristics, 454 -- 14.2.6 Laplace Analysis and Fault Identification, 456 -- 14.2.7 Step Response, 464 -- 14.3 1D FDTD with Second-Order Differential Equations, 468 -- 14.4 Two-Dimensional (2D) FDTD Modeling, 472 -- 14.4.1 Field Components and FDTD Equations, 476 -- 14.4.2 FDTD-Based Virtual Tool: MGL2D Package, 477 -- 14.4.3 Characteristic Examples, 479 -- 14.5 Canonical 2D Wedge Scattering Problem, 494 -- 14.5.1 Problem Postulation, 494 -- 14.5.2 Review of Analytical Models, 496 -- 14.5.3 The FDTD Model, 499 -- 14.5.4 Discretization and Dey-Mittra Approach, 502 -- 14.5.5 The WedgeFDTD Package and Examples, 505 -- 14.5.6 Wedge Diffraction and FDTD versus MoM, 510 -- 14.6 Conclusions, 512 -- References, 512 -- 15 Parabolic Equation Method 515 -- 15.1 Introduction, 516 -- 15.2 The Parabolic Equation (PE) Model, 518 -- 15.3 The Split-Step Parabolic Equation (SSPE) Propagation Tool, 520 -- 15.4 The Finite Element Method-Based PE Propagation Tool, 528 -- 15.5 Atmospheric Refractivity Effects, 531 -- 15.6 A 2D Surface Duct Scenario and Reference Solutions, 533 -- 15.7 LINPE Algorithm and Canonical Tests/Comparisons, 538 -- 15.8 The GrSSPE Package, 558 -- 15.9 The Single-Knife-Edge Problem, 566 -- 15.10 Accurate Source Modeling, 571 -- 15.11 Dielectric Slab Waveguide, 580 -- 15.11.1 Even and Odd Symmetric Solutions, 582 -- 15.11.2 The SSPE Propagator and Eigenvalue Extraction, 584 -- 15.11.3 The Matlab-Based DiSLAB Package, 585 -- 15.12 Conclusions, 591 -- References, 591 -- 16 Parallel Plate Waveguide Problem 595 -- 16.1 Introduction, 595 -- 16.2 Problem Postulation and Analytical Solutions: Revisited, 599 -- 16.2.1 Green's Function in Terms of Mode Summation, 602 -- 16.2.2 Mode Summation for a Tilted/Directive Antenna, 604.
16.2.3 Eigenray Representation, 606 -- 16.2.4 Hybrid Ray + Image Method, 613 -- 16.3 Numerical Models, 613 -- 16.3.1 Split Step Parabolic Equation Model, 613 -- 16.3.2 Finite-Difference Time-Domain Model, 617 -- 16.3.3 Method of Moments (MoM), 622 -- 16.4 Conclusions, 638 -- References, 639 -- Appendix A Introduction to MATLAB 643 -- Appendix B Suggested References 653 -- Appendix C Suggested Tutorials and Feature Articles 655 -- Index 659.
Record Nr. UNINA-9910648493303321
Sevgi Levent  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic modeling and simulation [[electronic resource] /] / Levent Sevgi
Electromagnetic modeling and simulation [[electronic resource] /] / Levent Sevgi
Autore Sevgi Levent
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014]
Descrizione fisica 1 online resource (666 pages)
Disciplina 621.380285/53
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetism - Computer simulation
ISBN 1-118-87711-X
1-118-71644-2
9781118716410
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xvii -- About the Author xxvii -- Acknowledgments xxix -- 1 Introduction to MODSIM 1 -- 1.1 Models and Modeling, 2 -- 1.2 Validation, Verifi cation, and Calibration, 5 -- 1.3 Available Core Models, 7 -- 1.4 Model Selection Criteria, 9 -- 1.5 Graduate Level EM MODSIM Course, 11 -- 1.5.1 Course Description and Plan, 11 -- 1.5.2 Available Virtual EM Tools, 12 -- 1.6 EM-MODSIM Lecture Flow, 12 -- 1.7 Two Level EM Guided Wave Lecture, 17 -- 1.8 Conclusions, 19 -- References, 19 -- 2 Engineers Speak with Numbers 23 -- 2.1 Introduction, 23 -- 2.2 Measurement, Calculation, and Error Analysis, 24 -- 2.3 Significant Digits, Truncation, and Round-Off Errors, 27 -- 2.4 Error Propagation, 28 -- 2.5 Error and Confi dence Level, 29 -- 2.5.1 Predicting the Population's Confidence Interval, 33 -- 2.6 Hypothesis Testing, 36 -- 2.6.1 Testing Population Mean, 38 -- 2.6.2 Testing Population Proportion, 39 -- 2.6.3 Testing Two Population Averages, 39 -- 2.6.4 Testing Two Population Proportions, 39 -- 2.6.5 Testing Paired Data, 40 -- 2.7 Hypothetical Tests on Cell Phones, 41 -- 2.8 Conclusions, 45 -- References, 45 -- 3 Numerical Analysis in Electromagnetics 47 -- 3.1 Taylor's Expansion and Numerical Differentiation, 47 -- 3.1.1 Taylor's Expansion and Ordinary Differential Equations, 50 -- 3.1.2 Poisson and Laplace Equations, 52 -- 3.1.3 An Iterative (Finite-Difference) Solution, 53 -- 3.2 Numerical Integration, 58 -- 3.2.1 Rectangular Method, 58 -- 3.3 Nonlinear Equations and Root Search, 62 -- 3.4 Linear Systems of Equations, 64 -- References, 69 -- 4 Fourier Transform and Fourier Series 71 -- 4.1 Introduction, 71 -- 4.2 Fourier Transform, 72 -- 4.2.1 Fourier Transform (FT), 72 -- 4.2.2 Discrete Fourier Transform (DFT), 74 -- 4.2.3 Fast Fourier Transform (FFT), 76 -- 4.2.4 Aliasing, Spectral Leakage, and Scalloping Loss, 77 -- 4.2.5 Windowing and Window Functions, 80 -- 4.3 Basic Discretization Requirements, 81 -- 4.4 Fourier Series Representation, 85 -- 4.5 Rectangular Pulse and Its Harmonics, 92.
4.6 Conclusions, 92 -- References, 94 -- 5 Stochastic Modeling in Electromagnetics 95 -- 5.1 Introduction, 95 -- 5.2 Radar Signal Environment, 98 -- 5.2.1 Random Number Generation, 98 -- 5.2.2 Noise Generation, 101 -- 5.2.3 Signal Generation, 108 -- 5.2.4 Clutter Generation, 108 -- 5.3 Total Radar Signal, 111 -- 5.4 Decision Making and Detection, 114 -- 5.4.1 Hypothesis Operating Characteristics (HOCs), 115 -- 5.4.2 A Communication/Radar Receiver, 119 -- 5.5 Conclusions, 129 -- References, 130 -- 6 Electromagnetic Theory: Basic Review 133 -- 6.1 Maxwell Equations and Reduction, 133 -- 6.2 Waveguiding Structures, 134 -- 6.3 Radiation Problems and Vector Potentials, 136 -- 6.4 The Delta Dirac Function, 138 -- 6.5 Coordinate Systems and Basic Operators, 139 -- 6.6 The Point Source Representation, 141 -- 6.7 Field Representation of a Point/Line Source, 142 -- 6.8 Alternative Field Representations, 143 -- 6.9 Transverse Electric/Magnetic Fields, 145 -- 6.9.1 The 3D TE/TM Waves, 145 -- 6.9.2 The 2D TE/TM Waves, 146 -- 6.10 The TE/TM Source Injection, 151 -- 6.11 Second-Order EM Differential Equations, 154 -- 6.12 EM Wave-Transmission Line Analogy, 155 -- 6.13 Time Dependence in Maxwell Equations, 157 -- 6.14 Physical Fundamentals, 158 -- References, 158 -- 7 Sturm-Liouville Equation: The Bridge between Eigenvalue and Green's Function Problems 161 -- 7.1 Introduction, 161 -- 7.2 Guided Wave Scenarios, 162 -- 7.3 The Sturm-Liouville Equation, 165 -- 7.3.1 The Eigenvalue Problem, 167 -- 7.3.2 The Green's Function (GF) Problem, 168 -- 7.3.3 Finite z-Domain Problem, 169 -- 7.3.4 Infi nite z-Domain Problem, 170 -- 7.3.5 Relation between Eigenvalue and Green's Function Problems, 171 -- 7.4 Conclusions, 172 -- References, 173 -- 8 The 2D Nonpenetrable Parallel Plate Waveguide 175 -- 8.1 Introduction, 176 -- 8.2 Propagation Inside a 2D-PEC Parallel Plate Waveguide, 177 -- 8.2.1 Formulation of the TE- and TM-Type Problems, 178 -- 8.2.2 The Green's Function Problem, 181 -- 8.2.3 Accessing the Spectral Domain: Separation of Variables, 182.
8.2.4 Spectral Representations: Eigenvalue Problems, 183 -- 8.2.5 Spectral Representations: 1D Characteristic Green's Functions, 184 -- 8.2.6 The 2D Green's Function Problem: Alternative Representations, 185 -- 8.3 Alternative Representation: Eigenray Solution, 187 -- 8.3.1 Relation between Eigenmode and Eigenray Representations, 191 -- 8.3.2 2D GF and Hybrid Ray-Mode Decomposition, 192 -- 8.4 A 2D-PEC Parallel Plate Waveguide Simulator, 194 -- 8.4.1 Representations Used for Mode, Ray, and Hybrid Solutions, 195 -- 8.4.2 MATLAB Packages: RayMode and Hybrid, 207 -- 8.4.3 Numerical Examples, 210 -- 8.5 Eigenvalue Extraction from Propagation Characteristics, 215 -- 8.5.1 Longitudinal Correlation Function, 215 -- 8.5.2 Numerical Illustrations, 217 -- 8.6 Tilted Beam Excitation, 221 -- 8.7 Conclusions, 223 -- References, 225 -- 9 Wedge Waveguide with Nonpenetrable Boundaries 227 -- 9.1 Introduction, 228 -- 9.2 Statement of the Problem: Physical Configuration and Ray-Asymptotic Guided Wave Schematizations, 229 -- 9.3 Source-Free Solutions, 230 -- 9.3.1 Separable Coordinates: Conventional NM, 230 -- 9.3.2 Weakly Nonseparable Coordinates: AM, 231 -- 9.3.3 Uniformizing the AM Near Caustics: IM, 232 -- 9.4 Test Problem: The 2D Line-Source-Excited Nonpenetrable Wedge Waveguide, 234 -- 9.4.1 Exact Solution in Cylindrical Coordinate, 234 -- 9.4.2 Approximate Solutions in Rectangular Coordinates, 241 -- 9.4.3 IM Spectral Representation, 244 -- 9.5 The MATLAB Package “WedgeGUIDE,” 247 -- 9.6 Numerical Tests and Illustrations, 249 -- 9.7 Conclusions, 256 -- Appendix 9A: Formation of the Spectral IM Integral in Section 9.3.3, 257 -- References, 262 -- 10 High Frequency Asymptotics: The 2D Wedge Diffraction Problem 265 -- 10.1 Introduction, 266 -- 10.2 Plane Wave Illumination and HFA Models, 268 -- 10.2.1 Exact Solution by Series Summation, 268 -- 10.2.2 The Physical Optics (PO) Solution, 270 -- 10.2.3 The PTD Solution, 272 -- 10.2.4 The UTD Solution, 273 -- 10.2.5 The Parabolic Equation (PE) Solution, 275.
10.3 HFA Models under Line Source (LS) Excitations, 275 -- 10.3.1 Exact Solution by Series Summation, 276 -- 10.3.2 Exact Solution by Integral, 277 -- 10.3.3 The Parabolic Equation (PE) Solution, 277 -- 10.4 Basic MATLAB Scripts, 278 -- 10.5 The WedgeGUI Virtual Tool and Some Examples, 291 -- 10.6 Conclusions, 297 -- References, 298 -- 11 Antennas: Isotropic Radiators and Beam Forming/Beam Steering 301 -- 11.1 Introduction, 301 -- 11.2 Arrays of Isotropic Radiators, 303 -- 11.3 The ARRAY Package, 306 -- 11.4 Beam Forming/Steering Examples, 310 -- 11.5 Conclusions, 317 -- References, 318 -- 12 Simple Propagation Models and Ray Solutions 319 -- 12.1 Introduction, 320 -- 12.2 Ray-Tracing Approaches, 321 -- 12.3 A Ray-Shooting MATLAB Package, 323 -- 12.4 Characteristic Examples, 329 -- 12.5 Flat-Earth Problem and 2Ray Model, 333 -- 12.6 Knife-Edge Problem and 4Ray Model, 338 -- 12.7 Ray Plus Diffraction Models, 348 -- 12.8 Conclusions, 351 -- References, 351 -- 13 Method of Moments 353 -- 13.1 Introduction, 353 -- 13.2 Approximating a Periodic Function by Other Functions: Fourier Series Representation, 354 -- 13.3 Introduction to the MoM, 359 -- 13.4 Simple Applications of MoM, 361 -- 13.4.1 An Ordinary Differential Equation, 361 -- 13.4.2 The Parallel Plate Capacitor, 364 -- 13.4.3 Propagation over PEC Flat Earth, 366 -- 13.5 MoM Applied to Radiation and Scattering Problems, 372 -- 13.5.1 A Complex Antenna Structure, 372 -- 13.5.2 Ground Wave Propagation Modeling, 373 -- 13.5.3 EM Scattering from Infinitely Long Cylinder, 376 -- 13.5.4 3D RCS Modeling, 381 -- 13.6 MoM Applied to Wedge Diffraction Problem, 386 -- 13.7 MoM Applied to Wedge Waveguide Problem, 397 -- 13.8 Conclusions, 402 -- References, 402 -- 14 Finite-Difference Time-Domain Method 407 -- 14.1 FDTD Representation of EM Plane Waves, 407 -- 14.1.1 Maxwell Equations and Plane Waves, 408 -- 14.1.2 FDTD and Discretization, 410 -- 14.1.3 A One-Dimensional FDTD MATLAB Script, 417 -- 14.1.4 MATLAB-Based FDTD1D Package, 417.
14.2 Transmission Lines and Time-Domain Reflectometer, 429 -- 14.2.1 Transmission Line (TL) Theory, 430 -- 14.2.2 Plane Wave-Transmission Line Analogy, 434 -- 14.2.3 FDTD Representation of TL Equations, 437 -- 14.2.4 MATLAB-Based TDRMeter Package, 447 -- 14.2.5 Fourier Analysis and Reflection Characteristics, 454 -- 14.2.6 Laplace Analysis and Fault Identification, 456 -- 14.2.7 Step Response, 464 -- 14.3 1D FDTD with Second-Order Differential Equations, 468 -- 14.4 Two-Dimensional (2D) FDTD Modeling, 472 -- 14.4.1 Field Components and FDTD Equations, 476 -- 14.4.2 FDTD-Based Virtual Tool: MGL2D Package, 477 -- 14.4.3 Characteristic Examples, 479 -- 14.5 Canonical 2D Wedge Scattering Problem, 494 -- 14.5.1 Problem Postulation, 494 -- 14.5.2 Review of Analytical Models, 496 -- 14.5.3 The FDTD Model, 499 -- 14.5.4 Discretization and Dey-Mittra Approach, 502 -- 14.5.5 The WedgeFDTD Package and Examples, 505 -- 14.5.6 Wedge Diffraction and FDTD versus MoM, 510 -- 14.6 Conclusions, 512 -- References, 512 -- 15 Parabolic Equation Method 515 -- 15.1 Introduction, 516 -- 15.2 The Parabolic Equation (PE) Model, 518 -- 15.3 The Split-Step Parabolic Equation (SSPE) Propagation Tool, 520 -- 15.4 The Finite Element Method-Based PE Propagation Tool, 528 -- 15.5 Atmospheric Refractivity Effects, 531 -- 15.6 A 2D Surface Duct Scenario and Reference Solutions, 533 -- 15.7 LINPE Algorithm and Canonical Tests/Comparisons, 538 -- 15.8 The GrSSPE Package, 558 -- 15.9 The Single-Knife-Edge Problem, 566 -- 15.10 Accurate Source Modeling, 571 -- 15.11 Dielectric Slab Waveguide, 580 -- 15.11.1 Even and Odd Symmetric Solutions, 582 -- 15.11.2 The SSPE Propagator and Eigenvalue Extraction, 584 -- 15.11.3 The Matlab-Based DiSLAB Package, 585 -- 15.12 Conclusions, 591 -- References, 591 -- 16 Parallel Plate Waveguide Problem 595 -- 16.1 Introduction, 595 -- 16.2 Problem Postulation and Analytical Solutions: Revisited, 599 -- 16.2.1 Green's Function in Terms of Mode Summation, 602 -- 16.2.2 Mode Summation for a Tilted/Directive Antenna, 604.
16.2.3 Eigenray Representation, 606 -- 16.2.4 Hybrid Ray + Image Method, 613 -- 16.3 Numerical Models, 613 -- 16.3.1 Split Step Parabolic Equation Model, 613 -- 16.3.2 Finite-Difference Time-Domain Model, 617 -- 16.3.3 Method of Moments (MoM), 622 -- 16.4 Conclusions, 638 -- References, 639 -- Appendix A Introduction to MATLAB 643 -- Appendix B Suggested References 653 -- Appendix C Suggested Tutorials and Feature Articles 655 -- Index 659.
Record Nr. UNINA-9910830480003321
Sevgi Levent  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic reverberation chambers [[electronic resource] /] / Bernard Démoulin, Philippe Besnier
Electromagnetic reverberation chambers [[electronic resource] /] / Bernard Démoulin, Philippe Besnier
Autore Demoulin Bernard
Edizione [1st ed.]
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (433 p.)
Disciplina 621.3
Altri autori (Persone) BesnierPhilippe
Collana ISTE
Soggetto topico Electromagnetic waves - Measurement
Wave guides
ISBN 1-118-60203-X
1-118-60215-3
1-118-60197-1
1-299-18767-6
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Tabel of Contents; Preface; Foreword; Introduction; Chapter 1. Position of the Reverberation Chambers in Common Electromagnetic Tests; 1.1. Introduction; 1.2. Electromagnetic fields and plane waves; 1.2.1. Definition and properties of plane waves; 1.2.2. General plane wave representation; 1.2.3. Assimilation of the far-field to a local plane wave; 1.2.4. Induction phenomena produced by plane waves; 1.3. Electromagnetic tests in confined areas; 1.3.1. Emission of a small rectangular loop; 1.3.2. Tests carried out in a TEM cell
1.3.3. Measurements carried out in an anechoic shielded chamber1.3.4. Position of the reverberation chambers in tests carried out in a confined space; 1.4. Discussion; 1.4.1. On the use of the plane wave concepts; 1.4.2. On the uncertainty margin of the measurements carried out in a reverberation chamber; 1.5. Bibliography; Chapter 2. Main Physical Features of Electromagnetic Cavities; 2.1. Introduction; 2.2. Reduction of the modes in a 1D cavity; 2.2.1. Description of the 1D cavity; 2.2.2. Solutions of the 1D waves equation; 2.2.3. Eigenmodes computation
2.2.4. Comparison of a cavity to a network of LC resonators2.2.5. Contribution of the quality factor to the cavity; 2.2.6. Optimal coupling of the energy on an eigenmode; 2.2.7. Deviation of the modal frequencies produced by an obstacle; 2.2.8. Implementation of mode stirring; 2.3. Physical features of an empty rectangular cavity; 2.3.1. Geometrical description of the reverberation chamber; 2.3.2. Calculation of the eigenmodes' frequencies; 2.3.3. The first eigenmode; 2.3.4. Higher order modes; 2.3.5. Mode spacing and mode density; 2.3.6. Quality factor of the 3D cavity
2.3.7. Regarding the excitation conditions of the cavity2.3.8. Plane wave spectrum; 2.3.9. Influence of the energy losses on the plane wave spectrum; 2.4. The 3D cavity operating in stirred modes; 2.4.1. Role given to mode stirring; 2.4.2. Mechanical mode stirring; 2.4.3. Experimental proof of the modal excursion; 2.5. Discussion; 2.5.1. On the geometry of reverberation chambers; 2.5.2. On the use of the RLC resonators; 2.5.3. On the contribution of the modal interferences; 2.6. Bibliography; Chapter 3. Statistical Behavior of Stirred Waves in an Oversized Cavity; 3.1. Introduction
3.2. Descriptions of the ideal random electromagnetic field3.2.1. The electromagnetic field assumed as a random variable; 3.2.2. Statement of the postulate of an ideal random field; 3.2.3. Presentation conventions of the random variables; 3.2.4. χ2 probability distribution; 3.2.5. Probability density function of the absolute field amplitude; 3.2.6. Probability density function of the power variable; 3.3. Simulation of the properties of an ideal random field; 3.3.1. Construction of the plane wave spectrum; 3.3.2. Construction of the interferences by random trials
3.3.3. Use of the central limit theorem
Record Nr. UNINA-9910138865103321
Demoulin Bernard  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic reverberation chambers [[electronic resource] /] / Bernard Démoulin, Philippe Besnier
Electromagnetic reverberation chambers [[electronic resource] /] / Bernard Démoulin, Philippe Besnier
Autore Demoulin Bernard
Edizione [1st ed.]
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (433 p.)
Disciplina 621.3
Altri autori (Persone) BesnierPhilippe
Collana ISTE
Soggetto topico Electromagnetic waves - Measurement
Wave guides
ISBN 1-118-60203-X
1-118-60215-3
1-118-60197-1
1-299-18767-6
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Tabel of Contents; Preface; Foreword; Introduction; Chapter 1. Position of the Reverberation Chambers in Common Electromagnetic Tests; 1.1. Introduction; 1.2. Electromagnetic fields and plane waves; 1.2.1. Definition and properties of plane waves; 1.2.2. General plane wave representation; 1.2.3. Assimilation of the far-field to a local plane wave; 1.2.4. Induction phenomena produced by plane waves; 1.3. Electromagnetic tests in confined areas; 1.3.1. Emission of a small rectangular loop; 1.3.2. Tests carried out in a TEM cell
1.3.3. Measurements carried out in an anechoic shielded chamber1.3.4. Position of the reverberation chambers in tests carried out in a confined space; 1.4. Discussion; 1.4.1. On the use of the plane wave concepts; 1.4.2. On the uncertainty margin of the measurements carried out in a reverberation chamber; 1.5. Bibliography; Chapter 2. Main Physical Features of Electromagnetic Cavities; 2.1. Introduction; 2.2. Reduction of the modes in a 1D cavity; 2.2.1. Description of the 1D cavity; 2.2.2. Solutions of the 1D waves equation; 2.2.3. Eigenmodes computation
2.2.4. Comparison of a cavity to a network of LC resonators2.2.5. Contribution of the quality factor to the cavity; 2.2.6. Optimal coupling of the energy on an eigenmode; 2.2.7. Deviation of the modal frequencies produced by an obstacle; 2.2.8. Implementation of mode stirring; 2.3. Physical features of an empty rectangular cavity; 2.3.1. Geometrical description of the reverberation chamber; 2.3.2. Calculation of the eigenmodes' frequencies; 2.3.3. The first eigenmode; 2.3.4. Higher order modes; 2.3.5. Mode spacing and mode density; 2.3.6. Quality factor of the 3D cavity
2.3.7. Regarding the excitation conditions of the cavity2.3.8. Plane wave spectrum; 2.3.9. Influence of the energy losses on the plane wave spectrum; 2.4. The 3D cavity operating in stirred modes; 2.4.1. Role given to mode stirring; 2.4.2. Mechanical mode stirring; 2.4.3. Experimental proof of the modal excursion; 2.5. Discussion; 2.5.1. On the geometry of reverberation chambers; 2.5.2. On the use of the RLC resonators; 2.5.3. On the contribution of the modal interferences; 2.6. Bibliography; Chapter 3. Statistical Behavior of Stirred Waves in an Oversized Cavity; 3.1. Introduction
3.2. Descriptions of the ideal random electromagnetic field3.2.1. The electromagnetic field assumed as a random variable; 3.2.2. Statement of the postulate of an ideal random field; 3.2.3. Presentation conventions of the random variables; 3.2.4. χ2 probability distribution; 3.2.5. Probability density function of the absolute field amplitude; 3.2.6. Probability density function of the power variable; 3.3. Simulation of the properties of an ideal random field; 3.3.1. Construction of the plane wave spectrum; 3.3.2. Construction of the interferences by random trials
3.3.3. Use of the central limit theorem
Record Nr. UNINA-9910808680603321
Demoulin Bernard  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Guide to mitigating spacecraft charging effects [[electronic resource] /] / Henry B. Garrett, Albert C. Whittlesey
Guide to mitigating spacecraft charging effects [[electronic resource] /] / Henry B. Garrett, Albert C. Whittlesey
Autore Garrett Henry B
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2012
Descrizione fisica 1 online resource (202 p.)
Disciplina 629.47
Collana JPL space science and technology series
Soggetto topico Space vehicles - Electrostatic charging
Electric discharges - Prevention
ISBN 1-280-58942-6
9786613619259
1-118-24133-9
1-118-24140-1
1-118-24128-2
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto GUIDE TO MITIGATING SPACECRAFT CHARGING EFFECTS; CONTENTS; Note from the Series Editor; Foreword; Preface; 1 Introduction; References; 2 Introduction to the Physics of Charging and Discharging; 2.1 Physical Concepts; 2.1.1 Plasma; 2.1.2 Penetration; 2.1.3 Charge Deposition; 2.1.4 Conductivity and Grounding; 2.1.5 Breakdown Voltage; 2.1.6 Dielectric Constant; 2.1.7 Shielding Density; 2.1.8 Electron Fluxes (Fluences) at Breakdown; 2.2 Electron Environment; 2.2.1 Units; 2.2.2 Substorm Environment Specifications; 2.3 Modeling Spacecraft Charging; 2.3.1 The Physics of Surface Charging
2.3.2 The Physics of Dielectric Charging 2.4 Discharge Characteristics; 2.4.1 Dielectric Surface Breakdowns; 2.4.2 Buried (Internal) Charge Breakdowns; 2.4.3 Spacecraft-to-Space Breakdowns; 2.5 Coupling Models; 2.5.1 Lumped-Element Modeling; 2.5.2 Electromagnetic Coupling Models; References; 3 Spacecraft Design Guidelines; 3.1 Processes; 3.1.1 Introduction; 3.1.2 Design; 3.1.3 Analysis; 3.1.4 Testing and Measurement; 3.1.5 Inspection; 3.2 Design Guidelines; 3.2.1 General ESD Design Guidelines; 3.2.2 Surface ESD Design Guidelines, Excluding Solar Arrays; 3.2.3 Internal ESD Design Guidelines
3.2.4 Solar Array ESD Design Guidelines 3.2.5 Special Situations ESD Design Guidelines; References; 4 Spacecraft Test Techniques; 4.1 Test Philosophy; 4.2 Simulation of Parameters; 4.3 General Test Methods; 4.3.1 ESD-Generating Equipment; 4.3.2 Methods of ESD Applications; References; 5 Control and Monitoring Techniques; 5.1 Active Spacecraft Charge Control; 5.2 Environmental and Event Monitors; References; 6 Material Notes and Tables; 6.1 Dielectric Material List; 6.2 Conductor Material List; References; A Nomenclature; A.1 Constants and Measurement Units; A.2 Acronyms and Abbreviations
A.3 Defined Terms A.4 Variables; A.5 Symbols; B The Space Environment; B.1 Introduction to Space Environments; B.1.1 Quantitative Representations of the Space Environment; B.1.2 Data Sources; B.2 Geosynchronous Environments; B.2.1 Geosynchronous Plasma Environments; B.2.2 Geosynchronous High-Energy Environments; B.3 Other Earth Environments; B.3.1 MEO; B.3.2 PEO; B.3.3 Molniya Orbit; B.4 Other Space Environments; B.4.1 Solar Wind; B.4.2 Earth, Jupiter, and Saturn Magnetospheres Compared; References; C Environment, Electron Transport, and Spacecraft Charging Computer Codes
C.1 Environment Codes C.1.1 AE8/AP8; C.1.2 CRRES; C.1.3 Flux Model for Internal Charging (FLUMIC); C.1.4 GIRE/SATRAD; C.1.5 Handbook of Geophysics and the Space Environment; C.1.6 L2 Charged Particle Environment (L2-CPE); C.1.7 MIL-STD-1809, Space Environment for USAF Space Vehicles; C.1.8 Geosynchronous Plasma Model; C.1.9 Others; C.2 Transport Codes; C.2.1 Cosmic Ray Effects on MicroElectronics 1996 (CREME96); C.2.2 EGS4; C.2.3 Geant4; C.2.4 Integrated TIGER Series (ITS); C.2.5 MCNP/MCNPE; C.2.6 NOVICE; C.2.7 NUMIT; C.2.8 SHIELDOSE; C.2.9 SPENVIS/DICTAT; C.2.10 TRIM; C.2.11 Summary
C.3 Charging Codes
Record Nr. UNINA-9910141250903321
Garrett Henry B  
Hoboken, N.J., : Wiley, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Guide to mitigating spacecraft charging effects [[electronic resource] /] / Henry B. Garrett, Albert C. Whittlesey
Guide to mitigating spacecraft charging effects [[electronic resource] /] / Henry B. Garrett, Albert C. Whittlesey
Autore Garrett Henry B
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2012
Descrizione fisica 1 online resource (202 p.)
Disciplina 629.47
Collana JPL space science and technology series
Soggetto topico Space vehicles - Electrostatic charging
Electric discharges - Prevention
ISBN 1-280-58942-6
9786613619259
1-118-24133-9
1-118-24140-1
1-118-24128-2
Classificazione SCI022000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto GUIDE TO MITIGATING SPACECRAFT CHARGING EFFECTS; CONTENTS; Note from the Series Editor; Foreword; Preface; 1 Introduction; References; 2 Introduction to the Physics of Charging and Discharging; 2.1 Physical Concepts; 2.1.1 Plasma; 2.1.2 Penetration; 2.1.3 Charge Deposition; 2.1.4 Conductivity and Grounding; 2.1.5 Breakdown Voltage; 2.1.6 Dielectric Constant; 2.1.7 Shielding Density; 2.1.8 Electron Fluxes (Fluences) at Breakdown; 2.2 Electron Environment; 2.2.1 Units; 2.2.2 Substorm Environment Specifications; 2.3 Modeling Spacecraft Charging; 2.3.1 The Physics of Surface Charging
2.3.2 The Physics of Dielectric Charging 2.4 Discharge Characteristics; 2.4.1 Dielectric Surface Breakdowns; 2.4.2 Buried (Internal) Charge Breakdowns; 2.4.3 Spacecraft-to-Space Breakdowns; 2.5 Coupling Models; 2.5.1 Lumped-Element Modeling; 2.5.2 Electromagnetic Coupling Models; References; 3 Spacecraft Design Guidelines; 3.1 Processes; 3.1.1 Introduction; 3.1.2 Design; 3.1.3 Analysis; 3.1.4 Testing and Measurement; 3.1.5 Inspection; 3.2 Design Guidelines; 3.2.1 General ESD Design Guidelines; 3.2.2 Surface ESD Design Guidelines, Excluding Solar Arrays; 3.2.3 Internal ESD Design Guidelines
3.2.4 Solar Array ESD Design Guidelines 3.2.5 Special Situations ESD Design Guidelines; References; 4 Spacecraft Test Techniques; 4.1 Test Philosophy; 4.2 Simulation of Parameters; 4.3 General Test Methods; 4.3.1 ESD-Generating Equipment; 4.3.2 Methods of ESD Applications; References; 5 Control and Monitoring Techniques; 5.1 Active Spacecraft Charge Control; 5.2 Environmental and Event Monitors; References; 6 Material Notes and Tables; 6.1 Dielectric Material List; 6.2 Conductor Material List; References; A Nomenclature; A.1 Constants and Measurement Units; A.2 Acronyms and Abbreviations
A.3 Defined Terms A.4 Variables; A.5 Symbols; B The Space Environment; B.1 Introduction to Space Environments; B.1.1 Quantitative Representations of the Space Environment; B.1.2 Data Sources; B.2 Geosynchronous Environments; B.2.1 Geosynchronous Plasma Environments; B.2.2 Geosynchronous High-Energy Environments; B.3 Other Earth Environments; B.3.1 MEO; B.3.2 PEO; B.3.3 Molniya Orbit; B.4 Other Space Environments; B.4.1 Solar Wind; B.4.2 Earth, Jupiter, and Saturn Magnetospheres Compared; References; C Environment, Electron Transport, and Spacecraft Charging Computer Codes
C.1 Environment Codes C.1.1 AE8/AP8; C.1.2 CRRES; C.1.3 Flux Model for Internal Charging (FLUMIC); C.1.4 GIRE/SATRAD; C.1.5 Handbook of Geophysics and the Space Environment; C.1.6 L2 Charged Particle Environment (L2-CPE); C.1.7 MIL-STD-1809, Space Environment for USAF Space Vehicles; C.1.8 Geosynchronous Plasma Model; C.1.9 Others; C.2 Transport Codes; C.2.1 Cosmic Ray Effects on MicroElectronics 1996 (CREME96); C.2.2 EGS4; C.2.3 Geant4; C.2.4 Integrated TIGER Series (ITS); C.2.5 MCNP/MCNPE; C.2.6 NOVICE; C.2.7 NUMIT; C.2.8 SHIELDOSE; C.2.9 SPENVIS/DICTAT; C.2.10 TRIM; C.2.11 Summary
C.3 Charging Codes
Record Nr. UNINA-9910824612703321
Garrett Henry B  
Hoboken, N.J., : Wiley, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui